导数列表

分类: bt365体育 发布时间: 2025-07-04 09:30:35 作者: admin 阅读: 1812

以下的列表列出了许多函数的导数。f 和g是可微函数,而别的皆为常数。用这些公式,可以求出任何初等函数的导数。

目录

1 一般求导法则

2 代数函数的导数

3 指数和对数函数的导数

4 三角函数的导数

5 反三角函數的導數

6 双曲函数的导数

7 特殊函数的导数

8 註釋

一般求导法则

编辑

線性法则

d

(

M

f

)

d

x

=

M

d

f

d

x

;

[

M

f

(

x

)

]

=

M

f

(

x

)

{\displaystyle {{\mbox{d}}(Mf) \over {\mbox{d}}x}=M{{\mbox{d}}f \over {\mbox{d}}x};\qquad [Mf(x)]'=Mf'(x)}

d

(

f

±

g

)

d

x

=

d

f

d

x

±

d

g

d

x

{\displaystyle {{{\mbox{d}}(f\pm g)} \over {{\mbox{d}}x}}={{\mbox{d}}f \over {\mbox{d}}x}\pm {{\mbox{d}}g \over {\mbox{d}}x}\ }

乘法定则

d

f

g

d

x

=

d

f

d

x

g

+

f

d

g

d

x

{\displaystyle {{\mbox{d}}fg \over {\mbox{d}}x}={{\mbox{d}}f \over {\mbox{d}}x}g+f{\frac {{\mbox{d}}g}{{\mbox{d}}x}}}

除法定则

d

f

g

d

x

=

d

f

d

x

g

f

d

g

d

x

g

2

(

g

0

)

{\displaystyle {\frac {{\mbox{d}}{\dfrac {f}{g}}}{{\mbox{d}}x}}={\frac {{\dfrac {{\mbox{d}}f}{{\mbox{d}}x}}g-f{\dfrac {{\mbox{d}}g}{{\mbox{d}}x}}}{g^{2}}}\qquad (g\neq 0)}

倒数定则

d

1

g

d

x

=

d

g

d

x

g

2

(

g

0

)

{\displaystyle {\frac {{\mbox{d}}{\dfrac {1}{g}}}{{\mbox{d}}x}}={\frac {-{\dfrac {{\mbox{d}}g}{{\mbox{d}}x}}}{g^{2}}}\qquad (g\neq 0)}

复合函数求导法则(連鎖定則)

(

f

g

)

(

x

)

=

f

(

g

(

x

)

)

g

(

x

)

.

{\displaystyle (f\circ g)'(x)=f'(g(x))g'(x).}

d

f

[

g

(

x

)

]

d

x

=

d

f

(

g

)

d

g

d

g

d

x

=

f

[

g

(

x

)

]

g

(

x

)

{\displaystyle {\frac {{\mbox{d}}f[g(x)]}{{\mbox{d}}x}}={\frac {{\mbox{d}}f(g)}{{\mbox{d}}g}}{\frac {{\mbox{d}}g}{{\mbox{d}}x}}=f'[g(x)]g'(x)}

反函数的导数

由于

g

(

f

(

x

)

)

=

x

{\displaystyle g(f(x))=x}

,故

g

(

f

(

x

)

)

=

1

{\displaystyle g(f(x))'=1}

,根據复合函数求导法则,則

g

(

f

(

x

)

)

=

d

g

[

f

(

x

)

]

d

x

=

d

g

(

f

)

d

f

d

f

d

x

=

1

{\displaystyle g(f(x))'={\frac {{\mbox{d}}g[f(x)]}{{\mbox{d}}x}}={\frac {{\mbox{d}}g(f)}{{\mbox{d}}f}}{\frac {{\mbox{d}}f}{{\mbox{d}}x}}=1}

所以

d

f

d

x

=

1

d

g

(

f

)

d

f

=

[

d

g

(

f

)

d

f

]

1

=

[

g

(

f

)

]

1

{\displaystyle {\frac {{\mbox{d}}f}{{\mbox{d}}x}}={\frac {1}{\dfrac {{\mbox{d}}g(f)}{{\mbox{d}}f}}}=[{\frac {{\mbox{d}}g(f)}{{\mbox{d}}f}}]^{-1}=[g'(f)]^{-1}}

同理

d

g

d

x

=

1

d

f

(

g

)

d

g

=

[

d

f

(

g

)

d

g

]

1

=

[

f

(

g

)

]

1

{\displaystyle {\frac {{\mbox{d}}g}{{\mbox{d}}x}}={\frac {1}{\dfrac {{\mbox{d}}f(g)}{{\mbox{d}}g}}}=[{\frac {{\mbox{d}}f(g)}{{\mbox{d}}g}}]^{-1}=[f'(g)]^{-1}}

广义幂法则

(

f

g

)

=

(

e

g

ln

f

)

=

f

g

(

g

ln

f

+

g

f

f

)

{\displaystyle (f^{g})'=\left(e^{g\ln f}\right)'=f^{g}\left(g'\ln f+{\frac {g}{f}}f'\right)}

代数函数的导数

编辑

(n为任意实常数)

d

n

d

x

=

0

{\displaystyle {{\mbox{d}}n \over {\mbox{d}}x}=0}

d

x

d

x

=

1

{\displaystyle {{\mbox{d}}x \over {\mbox{d}}x}=1}

d

x

n

d

x

=

n

x

n

1

{\displaystyle {{\mbox{d}}x^{n} \over {\mbox{d}}x}=nx^{n-1}\qquad }

n

1

{\displaystyle n\leq 1}

,則

x

0

{\displaystyle x\neq 0}

d

|

x

|

d

x

=

x

|

x

|

=

|

x

|

x

=

sgn

x

x

0

{\displaystyle {{\mbox{d}}|x| \over {\mbox{d}}x}={x \over |x|}={|x| \over x}=\operatorname {sgn} x\qquad x\neq 0}

指数和对数函数的导数

编辑

d

e

f

(

x

)

d

x

=

f

(

x

)

e

f

(

x

)

{\displaystyle {\frac {{\mbox{d}}\ e^{f(x)}}{{\mbox{d}}x}}=f'(x)e^{f(x)}}

d

e

x

d

x

=

lim

Δ

x

0

e

x

e

x

Δ

x

Δ

x

=

e

x

lim

Δ

x

0

1

e

Δ

x

Δ

x

=

e

x

{\displaystyle {\begin{aligned}{\frac {{\mbox{d}}\ e^{x}}{{\mbox{d}}x}}&=\lim _{\Delta x\to 0}{\frac {e^{x}-e^{x-\Delta x}}{\Delta x}}\\&=e^{x}\lim _{\Delta x\to 0}{\frac {1-e^{-\Delta x}}{\Delta x}}\\&=e^{x}\end{aligned}}}

d

α

x

d

x

=

d

e

x

ln

α

d

x

=

d

e

x

ln

α

d

x

ln

α

d

x

ln

α

d

x

=

e

x

ln

α

ln

α

=

α

x

ln

α

{\displaystyle {\begin{aligned}{\frac {{\mbox{d}}\ \alpha ^{x}}{{\mbox{d}}x}}&={\frac {{\mbox{d}}\ e^{x\!\ln \!\alpha }}{{\mbox{d}}x}}\\&={\frac {{\mbox{d}}e^{x\!\ln \!\alpha }}{{\mbox{d}}\ x\!\ln \!\alpha }}\cdot {\frac {{\mbox{d}}\ x\!\ln \!\alpha }{{\mbox{d}}x}}\\&=e^{x\!\ln \!\alpha }\!\ln \!\alpha \\&=\alpha ^{x}\!\ln \!\alpha \end{aligned}}}

[註 1]

d

ln

x

d

x

=

lim

h

0

ln

(

x

+

h

)

ln

x

h

=

lim

h

0

(

1

h

ln

(

x

+

h

x

)

)

=

lim

h

0

(

x

x

h

ln

(

1

+

h

x

)

)

=

1

x

ln

(

lim

h

0

(

1

+

h

x

)

x

h

)

=

1

x

ln

e

=

1

x

{\displaystyle {\begin{aligned}{\frac {{\mbox{d}}\ln x}{{\mbox{d}}x}}&=\lim _{h\to 0}{\frac {\ln(x+h)-\ln x}{h}}\\&=\lim _{h\to 0}({\frac {1}{h}}\ln({\frac {x+h}{x}}))\\&=\lim _{h\to 0}({\frac {x}{xh}}\ln(1+{\frac {h}{x}}))\\&={\frac {1}{x}}\ln(\lim _{h\to 0}(1+{\frac {h}{x}})^{\frac {x}{h}})\\&={\frac {1}{x}}\ln e\\&={\frac {1}{x}}\end{aligned}}}

d

log

α

|

x

|

d

x

=

1

ln

α

d

ln

|

x

|

d

x

=

1

x

ln

α

{\displaystyle {\frac {{\mbox{d}}\log _{\alpha }|x|}{{\mbox{d}}x}}={1 \over \ln \alpha }{\frac {{\mbox{d}}\ln |x|}{{\mbox{d}}x}}={1 \over x\ln \alpha }}

d

x

x

d

x

=

x

x

(

1

+

ln

x

)

{\displaystyle {\frac {{\mbox{d}}\ x^{x}}{{\mbox{d}}x}}=x^{x}(1+\ln x)}

[註 2]

三角函数的导数

编辑

(

sin

x

)

=

lim

h

0

sin

(

x

+

h

)

sin

x

h

=

lim

h

0

sin

x

cos

h

+

cos

x

sin

h

sin

x

h

=

lim

h

0

(

sin

x

cos

h

1

h

+

cos

x

sin

h

h

)

=

cos

x

{\displaystyle {\begin{aligned}(\sin x)'&=\lim _{h\to 0}{\frac {\sin(x+h)-\sin x}{h}}\\&=\lim _{h\to 0}{\frac {\sin x\cos h+\cos x\sin h-\sin x}{h}}\\&=\lim _{h\to 0}(\sin x{\frac {\cos h-1}{h}}+\cos x{\frac {\sin h}{h}})\\&=\cos x\end{aligned}}}

(

cos

x

)

=

lim

h

0

cos

(

x

+

h

)

cos

x

h

=

lim

h

0

cos

x

cos

h

sin

x

sin

h

cos

x

h

=

lim

h

0

(

cos

x

cos

h

1

h

sin

x

sin

h

h

)

=

sin

x

{\displaystyle {\begin{aligned}(\cos x)'&=\lim _{h\to 0}{\frac {\cos(x+h)-\cos x}{h}}\\&=\lim _{h\to 0}{\frac {\cos x\cos h-\sin x\sin h-\cos x}{h}}\\&=\lim _{h\to 0}(\cos x{\frac {\cos h-1}{h}}-\sin x{\frac {\sin h}{h}})\\&=-\sin x\end{aligned}}}

(

tan

x

)

=

(

sin

x

cos

x

)

=

(

sin

x

)

cos

x

sin

x

(

cos

x

)

cos

2

x

=

cos

2

x

+

sin

2

x

cos

2

x

=

1

cos

2

x

=

sec

2

x

{\displaystyle {\begin{aligned}(\tan x)'&=({\frac {\sin x}{\cos x}})'\\&={\frac {(\sin x)'\cos x-\sin x(\cos x)'}{\cos ^{2}x}}\\&={\frac {\cos ^{2}x+\sin ^{2}x}{\cos ^{2}x}}\\&={\frac {1}{\cos ^{2}x}}=\sec ^{2}x\end{aligned}}}

(

cot

x

)

=

(

cos

x

sin

x

)

=

(

cos

x

)

sin

x

cos

x

(

sin

x

)

sin

2

x

=

sin

2

x

cos

2

x

sin

2

x

=

1

sin

2

x

=

csc

2

x

{\displaystyle {\begin{aligned}(\cot x)'&=({\frac {\cos x}{\sin x}})'\\&={\frac {(\cos x)'\sin x-\cos x(\sin x)'}{\sin ^{2}x}}\\&={\frac {-\sin ^{2}x-\cos ^{2}x}{\sin ^{2}x}}\\&=-{\frac {1}{\sin ^{2}x}}=-\csc ^{2}x\end{aligned}}}

(

sec

x

)

=

(

1

cos

x

)

=

sin

x

cos

2

x

=

sec

x

tan

x

{\displaystyle {\begin{aligned}(\sec x)'&=({\frac {1}{\cos x}})'\\&={\frac {\sin x}{\cos ^{2}x}}\\&=\sec x\tan x\end{aligned}}}

(

csc

x

)

=

(

1

sin

x

)

=

cos

x

sin

2

x

=

csc

x

cot

x

{\displaystyle {\begin{aligned}(\csc x)'&=({\frac {1}{\sin x}})'\\&={\frac {-\cos x}{\sin ^{2}x}}\\&=-\csc x\cot x\end{aligned}}}

反三角函數的導數

编辑

(

arcsin

x

)

=

1

cos

(

arcsin

x

)

sin

(

arcsin

x

)

=

x

cos

(

arcsin

x

)

(

arcsin

x

)

=

1

=

1

1

sin

2

(

arcsin

x

)

=

1

1

x

2

(

|

x

|

<

1

)

{\displaystyle {\begin{aligned}(\arcsin x)'&={\frac {1}{\cos(\arcsin x)}}\Leftrightarrow \sin(\arcsin x)=x\Leftrightarrow \cos(\arcsin x)(\arcsin x)'=1\\&={\frac {1}{\sqrt {1-\sin ^{2}(\arcsin x)}}}\\&={\frac {1}{\sqrt {1-x^{2}}}}\ \ (\left|x\right|<1)\end{aligned}}}

(

arccos

x

)

=

1

sin

(

arccos

x

)

cos

(

arccos

x

)

=

x

sin

(

arccos

x

)

(

arccos

x

)

=

1

=

1

1

cos

2

(

arccos

x

)

=

1

1

x

2

(

|

x

|

<

1

)

{\displaystyle {\begin{aligned}(\arccos x)'&={\frac {1}{-\sin(\arccos x)}}\Leftrightarrow \cos(\arccos x)=x\Leftrightarrow -\sin(\arccos x)(\arccos x)'=1\\&=-{\frac {1}{\sqrt {1-\cos ^{2}(\arccos x)}}}\\&=-{\frac {1}{\sqrt {1-x^{2}}}}\ \ (\left|x\right|<1)\end{aligned}}}

(

arctan

x

)

=

1

sec

2

(

arctan

x

)

tan

(

arctan

x

)

=

x

sec

2

(

arctan

x

)

(

arctan

x

)

=

1

=

1

1

+

tan

2

(

arctan

x

)

=

1

1

+

x

2

{\displaystyle {\begin{aligned}(\arctan x)'&={\frac {1}{\sec ^{2}(\arctan x)}}\Leftrightarrow \tan(\arctan x)=x\Leftrightarrow \sec ^{2}(\arctan x)(\arctan x)'=1\\&={\frac {1}{1+\tan ^{2}(\arctan x)}}\\&={\frac {1}{1+x^{2}}}\end{aligned}}}

(

arccot

x

)

=

1

csc

2

(

arccot

x

)

cot

(

arccot

x

)

=

x

csc

2

(

arccot

x

)

(

arccot

x

)

=

1

=

1

1

+

cot

2

(

arccot

x

)

=

1

1

+

x

2

{\displaystyle {\begin{aligned}(\operatorname {arccot} x)'&={\frac {1}{-\csc ^{2}(\operatorname {arccot} x)}}\Leftrightarrow \cot(\operatorname {arccot} x)=x\Leftrightarrow -\csc ^{2}(\operatorname {arccot} x)(\operatorname {arccot} x)'=1\\&=-{\frac {1}{1+\cot ^{2}(\operatorname {arccot} x)}}\\&=-{\frac {1}{1+x^{2}}}\end{aligned}}}

(

arcsec

x

)

=

1

sec

(

arcsec

x

)

tan

(

arcsec

x

)

sec

(

arcsec

x

)

=

x

sec

(

arcsec

x

)

tan

(

arcsec

x

)

(

arcsec

x

)

=

1

=

1

|

x

|

sec

2

(

arcsec

x

)

1

=

1

|

x

|

x

2

1

(

|

x

|

>

1

)

{\displaystyle {\begin{aligned}(\operatorname {arcsec} x)'&={\frac {1}{\sec(\operatorname {arcsec} x)\tan(\operatorname {arcsec} x)}}\Leftrightarrow \sec(\operatorname {arcsec} x)=x\Leftrightarrow \sec(\operatorname {arcsec} x)\tan(\operatorname {arcsec} x)(\operatorname {arcsec} x)'=1\\&={\frac {1}{|x|{\sqrt {\sec ^{2}(\operatorname {arcsec} x)-1}}}}\\&={\frac {1}{|x|{\sqrt {x^{2}-1}}}}\ \ (\left|x\right|>1)\end{aligned}}}

(

arccsc

x

)

=

1

csc

(

arccsc

x

)

cot

(

arccsc

x

)

csc

(

arccsc

x

)

=

x

csc

(

arccsc

x

)

cot

(

arccsc

x

)

(

arccsc

x

)

=

1

=

1

|

x

|

csc

2

(

arcsec

x

)

1

=

1

|

x

|

x

2

1

(

|

x

|

>

1

)

{\displaystyle {\begin{aligned}(\operatorname {arccsc} x)'&={\frac {1}{-\csc(\operatorname {arccsc} x)\cot(\operatorname {arccsc} x)}}\Leftrightarrow \csc(\operatorname {arccsc} x)=x\Leftrightarrow -\csc(\operatorname {arccsc} x)\cot(\operatorname {arccsc} x)(\operatorname {arccsc} x)'=1\\&=-{\frac {1}{|x|{\sqrt {\csc ^{2}(\operatorname {arcsec} x)-1}}}}\\&=-{\frac {1}{|x|{\sqrt {x^{2}-1}}}}\ \ (\left|x\right|>1)\end{aligned}}}

双曲函数的导数

编辑

(

sinh

x

)

=

cosh

x

=

e

x

+

e

x

2

{\displaystyle (\sinh x)'=\cosh x={\frac {e^{x}+e^{-x}}{2}}}

(

arsinh

x

)

=

1

x

2

+

1

{\displaystyle (\operatorname {arsinh} \,x)'={1 \over {\sqrt {x^{2}+1}}}}

(

cosh

x

)

=

sinh

x

=

e

x

e

x

2

{\displaystyle (\cosh x)'=\sinh x={\frac {e^{x}-e^{-x}}{2}}}

(

arcosh

x

)

=

1

x

2

1

(

x

>

1

)

{\displaystyle (\operatorname {arcosh} \,x)'={1 \over {\sqrt {x^{2}-1}}}(x>1)}

(

tanh

x

)

=

sech

2

x

{\displaystyle (\tanh x)'=\operatorname {sech} ^{2}\,x}

(

artanh

x

)

=

1

1

x

2

(

|

x

|

<

1

)

{\displaystyle (\operatorname {artanh} \,x)'={1 \over 1-x^{2}}(|x|<1)}

(

sech

x

)

=

tanh

x

sech

x

{\displaystyle (\operatorname {sech} \,x)'=-\tanh x\,\operatorname {sech} \,x}

(

arsech

x

)

=

1

x

1

x

2

(

0

<

x

<

1

)

{\displaystyle (\operatorname {arsech} \,x)'=-{1 \over x{\sqrt {1-x^{2}}}}(0

(

csch

x

)

=

coth

x

csch

x

(

x

0

)

{\displaystyle (\operatorname {csch} \,x)'=-\,\operatorname {coth} \,x\,\operatorname {csch} \,x(x\neq 0)}

(

arcsch

x

)

=

1

|

x

|

1

+

x

2

(

x

0

)

{\displaystyle (\operatorname {arcsch} \,x)'=-{1 \over |x|{\sqrt {1+x^{2}}}}(x\neq 0)}

(

coth

x

)

=

csch

2

x

(

x

0

)

{\displaystyle (\operatorname {coth} \,x)'=-\,\operatorname {csch} ^{2}\,x(x\neq 0)}

(

arcoth

x

)

=

1

1

x

2

(

|

x

|

>

1

)

{\displaystyle (\operatorname {arcoth} \,x)'={1 \over 1-x^{2}}(|x|>1)}

特殊函数的导数

编辑

伽玛函数

d

Γ

(

x

)

d

x

=

0

e

t

t

x

1

ln

t

d

t

{\displaystyle {\frac {{\mbox{d}}\Gamma (x)}{{\mbox{d}}x}}=\int _{0}^{\infty }e^{-t}t^{x-1}\ln \!t{\mbox{d}}t}

註釋

编辑

^ 這是前述廣義冪法則在「

f

(

x

)

=

α

{\displaystyle f(x)=\alpha }

g

(

x

)

=

x

{\displaystyle g(x)=x}

」時的特例。

^ 這是前述廣義冪法則在「

f

(

x

)

=

x

{\displaystyle f(x)=x}

g

(

x

)

=

x

{\displaystyle g(x)=x}

」時的特例。